Total T₄ (Thyroxin) MICRO-ELISA Test Kit

Prod. No.: T180
Pkg. Size: 96 Tests

Description
The MICRO-ELISA THYROXIN (T₄) test is a solid phase competitive enzyme immunoassay (ELISA) Diagnostic Kit for the in vitro quantitative determination of thyroxin (T₄) concentration in human serum.

Summary and Explanation of the Test
The principal tests used in the laboratory evaluation of thyroid function are Total Thyroxin (T₄), Total Triiodothyronine (T₃), T-uptake (T-Up), a calculated Free Thyroxin Index (FTI) and Thyroid Stimulating Hormone (TSH). The results of these tests are interrelated and help the clinician in making a diagnosis. Clinical hypothyroidism results from underproduction of thyroid hormones by the thyroid gland, consequently an abnormally low circulating T₄ and T₃ concentration in blood. Clinical hyperthyroidism results from excessive production of thyroid hormones and resulting elevation of T₄ and T₃ concentrations.

The manifestations of thyroid dysfunction can result from disease of the thyroid gland (PRIMARY hyperthyroidism or hypothyroidism), disease of the pituitary gland (SECONDARY hyperthyroidism or hypothyroidism) or disease of the hypothalamus (TERTIARY hyperthyroidism or hypothyroidism).

Thyroxin (3,5,3',5'-tetraiodo-l-thyronine, T₄) and Triiodothyronine (3,5,3'-triiodo-l-thyronine, T₃), are the hormones originating from the thyroid gland. T₄ and T₃ are responsible for regulating diverse biochemical processes throughout the body that are essential for protein synthesis, normal development, metabolic and neural activity.

T₄ is synthesized within the thyroid gland and secreted directly into the bloodstream. Approximately 30% of the circulating T₄ is enzymatically deiodinated at the 5' position in the peripheral tissues to yield T₃. The T₃ likely serves as a "prohormone" for T₄, which has a much greater metabolic activity.

T₄ and T₃ are transported through the peripheral blood stream largely bound to serum proteins. The major transport protein is Thyroxin Binding Globulin (TBG) which normally accounts for 80% of the bound hormone. The other thyroid hormone binding proteins are Thyroxin Binding Prealbumin and Albumin. Only about 0.3% of the total serum T₄ and only about 0.1% of the total serum T₃ are unbound and free to diffuse into tissue to exert their biological effects. When the level of TBG increases, the level of total T₄ will increase to maintain the same level of unbound or free T₄ in the bloodstream of an euthyroid individual.

Simply determining the total T₄ concentration fails to take into account the variations in TBG levels that affect the unbound thyroxin (free T₄) concentration. TBG levels can vary for reasons incidental to the patient’s thyroid status such as the presence of certain drugs, steroid hormones, pregnancy, and various non-thyroidal diseases. The Thyroid Uptake (T-Up) test is an indirect measurement of empty binding sites for T₄ on the TBG molecule (unsaturated TBG) in the patient specimen. The number obtained from the multiplication of the Total T₄ concentration by the Thyroid Uptake value is called a Free Thyroxin Index (FTI). The FTI correlates more closely with Free T₄ (the metabolic active fraction) concentration than does the total T₄ concentration alone. The FTI is therefore a better method of monitoring thyroid function and diagnosing thyroid illness than is a Total T₄ determination alone.

Diseases of the thyroid gland can result in clinical signs of thyroid dysfunction. Primary hypothyroidism results in underproduction of T₄ by the thyroid gland and consequently an abnormally low circulating T₄ and T₃ concentration in the blood. Primary hyperthyroidism leads to excessive thyroid production of T₄ and a resulting elevated T₃ concentration.

The determination of total serum T₃ is used in the differential diagnosis of thyroid disease, particularly hyperthyroidism. In most hyperthyroid patients, both serum T₃ and T₄ are elevated. However, approximately 5-10% of hyperthyroid patients have elevated T₂ concentrations but normal serum T₃, a condition known as T₂-thyrotoxicosis. Such clinical conditions make it vital to establish that serum T₃ is normal before excluding the diagnosis of hyperthyroidism. Serum T₃ level is also an excellent indicator for the ability of the thyroid to respond to both stimulatory and suppressive tests.

The thyroid gland function is regulated by the level of Thyroid Stimulating Hormone (TSH) which is produced and secreted by the pituitary gland. TSH is produced by the anterior lobe of the pituitary gland and acts on the thyroid gland to release thyroid hormones. The release of TSH from the pituitary is regulated by the hypothalamus when it secretes TRH (thyrotropin releasing hormone).

In an euthyroid individual, the levels of thyroid hormones in the blood are inversely related to the levels of TSH and TRH. When the levels of thyroid hormones rise, the levels of TRH and TSH fall; and when the levels of thyroid hormones fall, the levels of TRH and TSH rise. In the event of failure of the thyroid gland, the levels of thyroid hormones fall and the negative feedback results in an elevated level of TSH in the blood. Elevated levels of TSH are thus useful in the diagnosis of primary hyperthyroidism. Conversely, in the case of primary hypothyroidism, the elevated levels of thyroid hormones will result in decreased levels of TSH.

When there is a failure of the pituitary or the hypothalamus (secondary or tertiary hypothyroidism), the level of TSH is decreased in the presence of low levels of thyroid hormones. In secondary or tertiary hyperthyroidism, the level of TSH is increased in the presence of high levels of thyroid hormones.

<table>
<thead>
<tr>
<th>Condition</th>
<th>T₄</th>
<th>T₃</th>
<th>T-Up</th>
<th>FTI</th>
<th>TSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthyroid</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Pregnant Euthyroid</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Products are for research use only. Not for use in diagnostic or therapeutic procedures.
Principle of the Procedure
The MICRO-ELISA T₄ test is based on the principle of a solid phase competitive enzyme immunoassay (ELISA). The assay system utilizes a highly specific T₄ polyclonal antibody bound to a polystyrene well and an enzyme-labeled analyte. Test sample and a buffer containing chemical blocking agents and T₄-enzyme conjugate are added to each antibody coated well. The blocking agents, 8-anilino-1-naphthalene sulfonic acid (ANS) and sodium salicylate, cause a release of T₄ from the serum binding proteins and allow the T₄ to bind to the antibody-coated well. During a 60-minute incubation, T₄ in the patient's sera competes with the T₄-enzyme conjugate for binding sites on the coated wells. The number of binding sites on the well are limited; as more of them are occupied by T₄ binding sites on the coated wells. The number of binding sites

Additional Materials Required
Disposable tip precision pipettes 0.025, and 0.1 ml. Microtiter plate reader. Distilled or deionized water.

Storage and Stability
Store unopened kits at 2°-8°C. The following components may be stored at ambient temperature: WELLS, SUBSTRATE-CHROMOGEN, WASH BUFFER and STOP SOLUTION. Expiration date printed on the kit indicates limits of stability.

Chemical or Physical Indications of Instability
Alterations in the physical appearance of reagents, or results consistently outside the acceptable limits for control sera, may be due to reagent contamination or deterioration.

Instruments
Performance of the T₄ test requires use of a precision microtiter plate reader at a wavelength of 450 ± 20 nm:

Specimen Collection and Preparation
Serum samples are used in the MICRO-ELISA T₄ Diagnostic Kit procedure. No special preparation of the patient is necessary; fasting is not required. Repeated freezing and thawing of specimens should be avoided. No additives or preservatives are necessary.

STORAGE: Specimens may be stored in a tightly stoppered 2°-8°C for two days. If the serum is not assayed within 2 days, store frozen (-20°C) in a tightly stoppered tube for up to 3 weeks. Specimens should be allowed to come to room temperature and should be mixed thoroughly by gentle inversion before assaying.

Do not use grossly lipemic specimens. Moderately lipemic, hemolyzed and icteric specimens should not interfere with the assay.

Micro-ELISA T₄ Procedure
Reagent Preparation
WORKING CONJUGATE: Dilute only enough conjugate for a single assay run. Dilute the conjugate 1:11 with the assay buffer. Prepare 0.1 ml of working conjugate for each well. Label the bottle and store at 2°-8°C. Expiration time is 24 hours.

Dilute the entire contents of the WASH BUFFER to 1,000 ml with deionized water. Expiration date is the same as the concentrate. Store at 2°-8°C.
Preliminary Comments and Precautions
Patient sample may contain pathogens: treat all samples as potentially infectious.

CAUTION: Source material used to prepare Standards was derived from human material. The material was tested using FDA-approved methods and found non-reactive for Hepatitis B Surface Antigen (HBsAg) by ELISA and non-reactive for HIV by ELISA. No known test method can offer total assurance that infectious agents are absent. HANDLE THESE REAGENTS AS IF THEY ARE POTENTIALLY INFECTIOUS. Information on handling human serum is provided in the CDC/NIH manual “Bio-safety in Microbiological and Biomedical Laboratories” (1984).

Procedural Notes
1. When pipeting reagents, maintain a consistent order of addition from well to well. This will ensure equal incubation times for all wells. Carry out each addition step without pausing. The timing sequence in the addition of each reagent should be the same for all wells.
2. Samples should be pipetted to the bottom of the coated wells.
3. SINGLE POINT CALIBRATION USING A STORED CURVE.

The following optional procedure may be used:
 a. For each new kit lot, run one complete standard curve. This standard curve may be used for up to 30 days.
 b. For all subsequent sample runs, only the 0 µg/dl standard and controls need to be run with the patient serum samples as described in the Assay Procedure.
 c. See the Results Section to calculate patient sample T4 values using the single point calibration method.

CAUTION: If control values deviate from their established range, then the assay should be re-calibrated with a new standard curve.

NOTE: It is important in using a single point calibration that:
1. The assay procedure should be the same from run to run.
2. The same spectrophotometer or instrument should be used.
3. The spectrophotometer and all pipettes should be calibrated for accuracy and precision.
4. All test kit components used in an assay must be of the same master lot number. Materials should not be used after the expiration date shown on the package label. Components and test specimens should be at room temperature (18°-30°C) before testing.

Test Procedure
PREPARE WORKING CONJUGATE: TO AN ALIQUOT OF ASSAY BUFFER (0.1 ml for each WELL) ADD THE REQUIRED VOLUME OF STOCK CONJUGATE (10µl for each WELL), MIX GENTLY.
1. Pipet 25 µl of T4 standards into the appropriate well. (Only the 0 µg/dl standard need be run if using the previously stored curve).
2. Pipet 25 µl of each control and patient serum into the appropriate well.
3. Pipet 100 µl (0.1 ml) of fresh working T4-enzyme conjugate into all wells and mix gently.
4. Incubate at room temperature (18°-30°C) for 60 minutes ± 5 minutes.
5. Decant or aspirate and discard liquid contents of all wells.
6. Fill each well with diluted WASH BUFFER. Decant or aspirate liquid contents of all wells. Do not use tap water.

WARNING: WASHING THE WELLS IS OF CRITICAL IMPORTANCE. Fill the wells to overflowing, you CANNOT cause any carryover between wells. You CANNOT over wash the wells. Completely decant or aspirate all of the liquid out of the wells. SLAP the inverted wells on a FRESH clean piece of absorbent paper AFTER EACH WASH. YOU CANNOT SLAP TOO HARD, REMOVE ALL OF THE LIQUID FROM THE WELLS.
7. Repeat step 6 twice more (for a total of 3 washes). Tap wells free of any liquid or aspirate thoroughly.
8. Pipet or dispense 100 µl (0.1 ml) of SUBSTRATE / CHROMOGEN REAGENT into each well.
9. Mix thoroughly and incubate 15 minutes at room temperature (18°-30°C).
10. Pipet or dispense 100 µl (0.1 ml) of STOPPING REAGENT into each well and mix thoroughly.
11. Read the absorbance of each well at 450 ± 20 nm against water.

Calculation of Results
1. Calculate the %A/A0 value for each standard, control and sample.

\[
\frac{A}{A_0} = \frac{X \times 100\%}{A_0}
\]

A = the average absorbance value for the standard, controls and patient samples.
A0 = the average absorbance value for the 0 µg/dl standard.

2. Construct a standard curve by plotting the %A/A0 value for the thyroxin standards (vertical axis) versus the T4 standard concentration (horizontal axis) on the logit-log graph paper supplied.
3. Draw the best straight line through the points.
4. Interpolate the control and patient sample values from each %A/A0 value obtained.
5. Save the calibration curve for use in subsequent runs using only single point calibration (0 µg/dl).

Optional calculation method for use with single point calibration and stored standard calibration curve.

a. For single point calibration runs, calculate %A/A0 values for samples and controls using the absorbance of the 0 µg/dl standard that was run with them.
b. Using the original standard calibration curve, interpolate the control and patient sample values from each %A/A0 value obtained in the run.

NOTE: For automated data reduction, use a log/logit date transformation of A/A0 vs. T4 concentration.

Products are for research use only. Not for use in diagnostic or therapeutic procedures.
EXAMPLE DATA

<table>
<thead>
<tr>
<th>Specimen I.D</th>
<th>Aₐ₀₀</th>
<th>%A/A₀</th>
<th>Calculated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td>0 µg/dl</td>
<td>2.374</td>
<td>2.358</td>
</tr>
<tr>
<td>STANDARD</td>
<td>2 µg/dl</td>
<td>1.843</td>
<td>1.897</td>
</tr>
<tr>
<td>STANDARD</td>
<td>5 µg/dl</td>
<td>1.409</td>
<td>1.393</td>
</tr>
<tr>
<td>STANDARD</td>
<td>10 µg/dl</td>
<td>0.952</td>
<td>1.012</td>
</tr>
<tr>
<td>STANDARD</td>
<td>15 µg/dl</td>
<td>0.757</td>
<td>0.752</td>
</tr>
<tr>
<td>STANDARD</td>
<td>25 µg/dl</td>
<td>0.474</td>
<td>0.502</td>
</tr>
<tr>
<td>PATIENT 1</td>
<td>1.789</td>
<td>75%</td>
<td>2.6 µg/dl</td>
</tr>
<tr>
<td>PATIENT 2</td>
<td>1.203</td>
<td>50%</td>
<td>7.2 µg/dl</td>
</tr>
<tr>
<td>PATIENT 3</td>
<td>0.868</td>
<td>36%</td>
<td>12.2 µg/dl</td>
</tr>
</tbody>
</table>

The range of this assay is 0 - 25 µg/dl. For specimens with T₄ concentrations beyond the standard curve (25 µg/dl), repeat the test by diluting the specimen with the 0 µg/dl Standard. To obtain the final concentration, multiply the concentration of the diluted sample by the dilution factor.

FINAL REACTION STABILITY: The spectrophotometric measurement should be made within 30 minutes after the addition of the STOPPING REAGENT solution.

Quality Control

Good laboratory practice requires that quality control specimens be run with each patient sample run to check the assay performance. Three controls with normal, low and elevated values should be used. Pooled human serum or commercially available control sera are suitable. Any material used should be assayed repeatedly to establish mean values and acceptable ranges to assure proper performance.

Do not mix or interchange reagent from kits with different lot numbers. Pool and mix reagents from different bottles before use.

Do not use reagents beyond the expiration date printed on each vial or bottle.

T₄ Expected Values

It is recommended that each laboratory establish its own normal ranges based on a representative sampling of the local population. The following values for T₄ were established by the manufacturer and may be used as an initial guideline:

- Hypothyroid: less than 4.2 µg/dl
- Euthyroid: 4.3 to 12 µg/dl
- Hyperthyroid: greater than 12 µg/dl

Performance Characteristics of the Test

Assay Specificity

Specificity of this test system was proven by determining the interference of the following cross-reactants in the T₄ assay.

Results are expressed as the ratio of T₄ concentration to the concentration of the cross-reactant that will displace 50% of the T₄ enzyme conjugate.

<table>
<thead>
<tr>
<th>Cross-Reactant</th>
<th>% Cross-Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>l-Thyroxin (T₄)</td>
<td>100</td>
</tr>
<tr>
<td>d-Thyroxin</td>
<td>98</td>
</tr>
<tr>
<td>l-Triiodothyronine (T₃)</td>
<td>< 2</td>
</tr>
<tr>
<td>d-Triiodothyronine</td>
<td>< 2</td>
</tr>
<tr>
<td>Diiodothyronine</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Diiodotyrosine</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Iodotyrosine</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Salicylate</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>

Assay Sensitivity

The sensitivity of this assay is defined as the smallest single value which can be distinguished from the zero calibrator. This value was calculated from the mean + two standard deviations for twenty one replicates at the zero concentration. The calculated sensitivity is < 0.50 µg/dl.
Assay Reproducibility
Intra assay reproducibility was determined by measurement of 10 replicates of three serum pools in a single run.

<table>
<thead>
<tr>
<th>Serum</th>
<th>Mean T₄ (µg/dl)</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.9</td>
<td>0.12</td>
<td>3.9</td>
</tr>
<tr>
<td>B</td>
<td>7.8</td>
<td>0.33</td>
<td>4.2</td>
</tr>
<tr>
<td>C</td>
<td>13.4</td>
<td>0.37</td>
<td>2.8</td>
</tr>
</tbody>
</table>

The interassay reproducibility was determined by duplicate measurement of three serum pools in twelve separate runs.

<table>
<thead>
<tr>
<th>Serum</th>
<th>Mean T₄ (µg/dl)</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.0</td>
<td>0.15</td>
<td>4.9</td>
</tr>
<tr>
<td>B</td>
<td>8.0</td>
<td>0.21</td>
<td>2.6</td>
</tr>
<tr>
<td>C</td>
<td>13.8</td>
<td>0.65</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Assay Recovery
Known quantities of T₄ were added to a serum pool that contained a low concentration of endogenous T₄.

<table>
<thead>
<tr>
<th>Expected Value</th>
<th>T₄ µg/dl</th>
<th>Measured Value</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>8.0</td>
<td>8.0</td>
<td>93 %</td>
</tr>
<tr>
<td>11.8</td>
<td>12.8</td>
<td>12.8</td>
<td>108 %</td>
</tr>
<tr>
<td>15.0</td>
<td>15.0</td>
<td>15.0</td>
<td>100 %</td>
</tr>
<tr>
<td>21.4</td>
<td>19.5</td>
<td>19.5</td>
<td>91 %</td>
</tr>
</tbody>
</table>

Correlation with Radioimmunoassay
A total of 169 serum samples were run in the T₄ procedure and in a commercially available RIA procedure.

\[n = 169 \quad \text{Slope} = 0.99 \quad \text{Y Intercept} = -0.38 \quad \text{Coefficient} = 0.969 \]

References
2. Sutherland, R. L. et al. (1975) J. Endocrinol. 65:319

Warranty
This product is warranted to perform as described in its labeling, and Leinco Technologies, Inc. disclaims any implied warranty of merchantability or fitness for any other purpose, and in no event shall Leinco Technologies, Inc. be liable for any consequential damages arising out of the aforesaid express warranty.

Products are for research use only. Not for use in diagnostic or therapeutic procedures.