www.leinco.com

Human HLA-DP (MHC Class II) Monomorphic Antibody

Purified in vivo GOLD™ Functional Grade

Monoclonal Antibody

Product Information

Product No.:	H260
Clone:	B7/21
RRID:	AB_2737518
Isotype:	Mouse IgG3
Storage:	Sterile 2-8°C

Product Description

Specificity:

Clone B7/21 recognizes a monomorphic epitope on human HLA-DP1, -DP2, -DP3, -DP4, and -DP5. It does not cross-react with HLA-DR or HLA-DQ.

Antigen Distribution:

HLA-DP is expressed on antigen-presenting cells, including macrophages, monocytes, DCs, and B cells, and activated T cells.

Background:

HLA-DP antibody, clone B7/21, recognizes the major histocompatibility complex (MHC) class II molecule Human Leukocyte Antigen - DP isotype (HLA-DP). MHC class II is constitutively expressed on human professional antigen-presenting cells (APCs), including macrophages/monocytes, dendritic cells (DCs), and B cells, and is induced on T cells upon activation¹. HLA-DP consists of two transmembrane proteins, a 35 kDa α (heavy) chain and 29 kDa β (light) chain² encoded by the HLA-DPA1 and HLA-DPB1 genes, respectively, located in the HLA complex of chromosome 6. The N-terminal α 1 and β 1 domains form the antigen-binding groove, which binds 13-25 aa peptides derived from exogenous antigens³. On APCs, MHC class II plays a critical role in the adaptive immune response by presenting phagocytosed antigens to helper CD4 T cells. The T cell receptor (TCR)/CD3 complex of CD4 T cells interacts with peptide-MHC class II, which induces CD4 T cell activation leading to the coordination and regulation of other effector cells. CD4 molecules also bind to MHC class II, which helps augment TCR signaling⁴. It has also been demonstrated that MHC class II express on activated T cells are capable of antigen presentation⁵ and can transduce signals into T cells, enhancing T cell proliferation and activity⁶. High HLA-DP expression is associated with an increased risk of graft-versus-host disease⁷. Specific alleles of HLA-DP are associated with autoimmune diseases, including rheumatoid arthritis⁸.

Known Reactivity Species:

Human

Format:

Purified in vivo in vivo GOLD™ Functional Grade

Immunogen:

Unknown

Formulation

This monoclonal antibody is aseptically packaged and formulated in 0.01 M phosphate buffered saline (150 mM NaCl) PBS pH 7.2 - 7.4 with no carrier protein, potassium, calcium or preservatives added. Due to inherent biochemical properties of antibodies, certain products may be prone to precipitation over time. Precipitation may be removed by aseptic centrifugation and/or filtration.

Purity

≥95% monomer by analytical SEC, >95% by SDS Page

Endotoxin

< 1.0 EU/mg as determined by the LAL method

Products are for research use only. Not for use in diagnostic or therapeutic procedures.

Product Datasheet

www.leinco.com

Storage and Stability

Functional grade preclinical antibodies may be stored sterile as received at 2-8°C for up to one month. For longer term storage, aseptically aliquot in working volumes without diluting and store at \leq -70°C.

Avoid Repeated Freeze Thaw Cycles.

Product Preparation

Functional grade preclinical antibodies are manufactured in an animal free facility using *in vitro* cell culture techniques and are purified by a multi-step process including the use of protein A or G to assure extremely low levels of endotoxins, leachable protein A or aggregates.

Applications

Applications and Recommended Usage (Quality Tested By Leinco):

FC

Other Applications Reported in Literature:

ICC

Country of Origin

USA

References

- 1. Holling TM, et al. (2004) Hum Immunol. 65(4):282-90.
- 2. Mitaksov V & Fremont DH. (2006) J Biol Chem. 281(15):10618-25.
- 3. Wieczorek M, et al. (2017) Front Immunol. 8:292.
- 4. Artyomov MN, et al. (2010) Proc Natl Acad Sci USA. 107(39):16916-16921.
- 5. Barnaba V, et al. (1994) Eur J Immunol. 24(1):71-5.
- 6. Di Rosa F, et al. (1993) Hum Immunol. 38(4):251-60.
- 7. Petersdorf EW, et al. (2015) N Engl J Med. 373(7):599-609.
- 8. Raychaudhuri S, et al. (2012) Nat Genet. 44(3):291-6.