

Mouse CD120b (TNFR2) Antibody

DyLight® 488

Monoclonal Antibody

Product Information

Product No.:	T627
Clone:	TR75-54.7
RRID:	AB_2832074
Isotype:	Armenian Hamster IgG
Storage:	Sterile 2-8°C

Product Description

Specificity:

Armenian Hamster Anti-Mouse Tumor Necrosis Factor Receptor II (TNF RII) (Clone TR75-54.7) recognizes an epitope on Mouse TNF RII. This monoclonal antibody was purified using multi-step affinity chromatography methods such as Protein A or G depending on the species and isotype.

Background:

Tumor necrosis factor receptor II (TNF-RII) or CD120b is a 75kD type I transmembrane protein present on most cell types at low levels¹ including endothelial cells, cardiac myocytes and prostate cells²; the expression is upregulated upon activation. This receptor binds both TNF- α & TNF- β (aka. LT- α). In association with TRAF1 and TRAF2, the receptor crosslinking induced by TNF- α or LT- α trimers is critical for signal transduction, leading to apoptosis, NF-kB activation, increased expression of proinflammatory genes, tumor necrosis, and cell differentiation depending on cell type and differentiation state. The TR75-54.7 antibody has been shown to block ligand-induced receptor signaling.

Known Reactivity Species:

Mouse

Format:

DyLight® 488

Immunogen:

E. coli -expressed mouse Type II TNFR

Formulation

This DyLight® 488 conjugate is formulated in 0.01 M phosphate buffered saline (150 mM NaCl) PBS pH 7.4, 1% BSA and 0.09% sodium azide as a preservative.

Storage and Stability

This DyLight® 488 conjugate is stable when stored at 2-8°C. Do not freeze.

Country of Origin

USA

References

- 1. Zuckerman, KS. et al. (1998) Cancer Res. 58: 2217
- 2. Chan, FKM. et al. (2000) Science 288:2351
- 3. Loetscher, H. et al. (1990) Cell 61:351
- 4. Rothe, J. et al. (1993) Nature 364:798